Theorem 4.1 (Laplace Expansion Theorem): Let A in $\mathbb{R}^{n \times n}$. Then for any i in $1, \ldots, n$ and j in $1, \ldots, n$ we have

$$\det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det(\tilde{A}_{ij}) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det(\tilde{A}_{ij})$$

where \tilde{A}_{ij} is the $(n-1) \times (n-1)$ matrix obtained by deleting row *i* and column *j* from *A*.

The theorem above states that determinant of a matrix can be computed by a cofactor expansion across any row or down any column.

Example 4: Use Theorem 4.1 to quickly calculate det(A) where $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & -1 \end{bmatrix}$.

	4	0	-7	3	-5	
Example 5: Use Theorem 4.1 to quickly calculate $det(A)$ where $A =$	0	0	2	0	0	
	7	3	-6	4	8	
	5	0	5	2	-3	
	0	0	9	-1	2	

Definition: A matrix A in $\mathbb{R}^{n \times n}$ is called *upper triangular* if all entries lying below the diagonal entries are zero (i.e. $a_{ij} = 0$ whenever i > j). A matrix A in $\mathbb{R}^{n \times n}$ is called *lower triangular* if all entries lying above the diagonal entries are zero (i.e. $a_{ij} = 0$ whenever i < j). A matrix that is both upper triangular and lower triangular is <u>diagonal</u>.

Example 6: Calculate det(A) where
$$A = \begin{bmatrix} -3 & 1 & 2 \\ 0 & 4 & 5 \\ 0 & 0 & -6 \end{bmatrix}$$
.

$$A|=-3(-1)^{1+1} \begin{vmatrix} 4 & 5 \\ 0 & -6 \end{vmatrix} = -3(4(-6) - 0.5) = -3 \cdot 4 \cdot (-6) = 72.$$

Theorem 4.2: If A in $\mathbb{R}^{n \times n}$ is an upper triangular, lower triangular, or diagonal matrix. Then

 $\det(A) = a_{11}a_{22}\cdots a_{nn}$

Note: By theorem 2, $det(I_n) = 1$.